Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nanotechnology ; 32(48)2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1349735

ABSTRACT

Coronavirus disease 2019 (COVID-19) is today's most serious epidemic disease threatening the human race. The initial therapeutic approach of SARS-CoV-2 disease is based upon the binding the receptor-binding site of the spike protein to the host cell's ACE-2 receptor on the plasma membrane. In this study, it is aimed to develop a biocompatible and biodegradable polymeric drug delivery system that is targeted to the relevant receptor binding site and provides controlled drug release. Oseltamivir phosphate (OP) is an orally administered antiviral prodrug for primary therapy of the disease in biochemically activated carboxylate form (oseltamivir carboxylate OC). In the presented study, model drug OP loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) targeted with spike-binding peptide 1 (SBP1) of SARS-CoV-2 were designed to be used as an efficient and prolonged released antiviral drug delivery system. RY, EE, and DL values of the OP-loaded NPs produced by the solvent evaporation method were calculated to be 59.3%, 61.4%, and 26.9%, respectively. The particle size of OP-loaded NPs and OP-loaded NPs targeted with SBP1 peptide were 162.0 ± 11.0 and 226.9 ± 21.4 nm, respectively. While the zeta potential of the produced OP-loaded NPs was achieved negatively -23.9 ± 1.21 mV), the result of the modification with SBP1 peptide this value approached zero as -4.59 ± 0.728 mV. Morphological features of the OP-loaded NPs were evaluated using FEG-SEM. The further characterization and surface modification of the NPs were analyzed by FT-IR.In-vitrorelease studies of NPs showed that sustained release of OP occurred for two months that fitting the Higuchi kinetic model. By evaluating these outputs, it was reported that surface modification of OP-loaded NPs was significantly effective on characteristics such as size, zeta potential values, surface functionality, and release behavior. The therapeutic model drug-loaded polymeric formulation targeted with a specific peptide may serve as an alternative to more effective and controlled release pharmaceuticals in the treatment of COVID-19 upon an extensive investigation.


Subject(s)
COVID-19 Drug Treatment , Nanoparticles/chemistry , Oseltamivir/chemistry , Peptides/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Humans , Oseltamivir/therapeutic use
2.
J Nanosci Nanotechnol ; 21(4): 2075-2089, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1050421

ABSTRACT

In the current pandemic situation raised due to COVID-19, drug reuse is emerging as the first line of treatment. The viral agent that causes this highly contagious disease and the acute respiratory syndrome coronavirus (SARS-CoV) share high nucleotide similarity. Therefore, it is structurally expected that many existing viral targets are similar to the first SARS-CoV, probably being inhibited by the same compounds. Here, we selected two viral proteins based on their vital role in the viral life cycle: Structure of the main protease SARS-CoV-2 and the structural base of the SARS-CoV-2 protease 3CL, both supporting the entry of the virus into the human host. The approved drugs used were azithromycin, ritonavir, lopinavir, oseltamivir, ivermectin and heparin, which are emerging as promising agents in the fight against COVID-19. Our hypothesis behind molecular coupling studies is to determine the binding affinities of these drugs and to identify the main amino acid residues that play a fundamental role in their mechanism of action. Additional studies on a wide range of FDA-approved drugs, including a few more protein targets, molecular dynamics studies, in vitro and biological in vivo evaluation are needed to identify combination therapy targeted at various stages of the viral life cycle. In our experiment in silico, based mainly on the molecular coupling approach, we investigated six different types of pharmacologically active drugs, aiming at their potential application alone or in combination with the reuse of drugs. The ligands showed stable conformations when analyzing the affinity energy in both proteases: ivermectin forming a stable complex with the two proteases with values -8.727 kcal/mol for Main Protease and -9.784 kcal/mol for protease 3CL, Heparin with values of -7.647 kcal/mol for the Main protease and -7.737 kcal/mol for the 3CL protease. Both conform to the catalytic site of the proteases. Our studies can provide an insight into the possible interactions between ligands and receptors, through better conformation. The ligands ivermectin, heparin and ritonavir showed stable conformations. Our in-silica docking data shows that the drugs we have identified can bind to the binding compartment of both proteases, this strongly supports our hypothesis that the development of a single antiviral agent targeting Main protease, or 3CL protease, or an agent used in combination with other potential therapies, it could provide an effective line of defense against diseases associated with coronaviruses.


Subject(s)
Azithromycin/chemistry , COVID-19/enzymology , Coronavirus 3C Proteases/chemistry , Heparin/chemistry , Ivermectin/chemistry , Lopinavir/chemistry , Oseltamivir/chemistry , Ritonavir/chemistry , SARS-CoV-2/enzymology , Humans , Molecular Docking Simulation
3.
Bioorg Chem ; 104: 104257, 2020 11.
Article in English | MEDLINE | ID: covidwho-739774

ABSTRACT

BACKGROUND: Oseltamivir is a first-line antiviral drug, especially in primary hospitals. During the ongoing outbreak of coronavirus disease 2019 (COVID-19), most patients with COVID-19 who are symptomatic have used oseltamivir. Considering its popular and important role as an antiviral drug, it is necessary to evaluate oseltamivir in the treatment of COVID-19. OBJECTIVE: To evaluate the effect of oseltamivir against COVID-19. METHODS: Swiss-model was used to construct the structure of the N-terminal RNA-binding domain (NRBD) of the nucleoprotein (NC), papain-like protease (PLpro), and RNA-directed RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). TM-align program was performed to compare the structure of the viral proteins with the structure of the neuraminidase of influenza A. Molecular docking was used to analyze the theoretical possibility of effective binding of oseltamivir with the active centers of the viral proteins. In vitro study was used to evaluate the antiviral efficiency of oseltamivir against SARS-CoV-2. By clinical case analysis, we statistically evaluated whether the history of oseltamivir use influenced the progression of the disease. RESULTS: The structures of NRBD, PLpro, and RdRp were built successfully. The results from TM-align suggested that the S protein, NRBD, 3C-like protease (3CLpro), PLPrO, and RdRp were structurally similar to the influenza A neuraminidase, with TM-scores of 0.30077, 0.19254, 0.28766, 0.30666, and 0.34047, respectively. Interestingly, the active center of 3CL pro was found to be similar to the active center from the neuraminidase of influenza A. Through an analysis of molecular docking, we discovered that oseltamivir carboxylic acid was more favorable to bind to the active site of 3CLpro effectively, but its inhibitory effect was not strong compared with the positive group. Finally, we used in vitro study and retrospective case analysis to verify our speculations. We found that oseltamivir is ineffective against SARS-CoV-2 in vitro study and the clinical use of oseltamivir did not improve the patients' symptoms and signs and did not slow the disease progression. CONCLUSIONS: We consider that oseltamivir isn't suitable for the treatment of COVID-19. During the outbreak of novel coronavirus, when oseltamivir is not effective for the patients after they take it, health workers should be highly vigilant about the possibility of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Oseltamivir/therapeutic use , SARS-CoV-2/drug effects , Adult , Aged , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Cysteine Proteinase Inhibitors/metabolism , Cysteine Proteinase Inhibitors/therapeutic use , Female , Humans , Male , Middle Aged , Molecular Docking Simulation , Oseltamivir/chemistry , Oseltamivir/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Binding , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Retrospective Studies , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL